\(\int \frac {(5-x) (3+2 x)^3}{(2+5 x+3 x^2)^{3/2}} \, dx\) [2507]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 27, antiderivative size = 92 \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=-\frac {2 (3+2 x)^2 (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{9} (1239+554 x) \sqrt {2+5 x+3 x^2}+\frac {247 \text {arctanh}\left (\frac {5+6 x}{2 \sqrt {3} \sqrt {2+5 x+3 x^2}}\right )}{9 \sqrt {3}} \]

[Out]

247/27*arctanh(1/6*(5+6*x)*3^(1/2)/(3*x^2+5*x+2)^(1/2))*3^(1/2)-2/3*(3+2*x)^2*(121+139*x)/(3*x^2+5*x+2)^(1/2)+
2/9*(1239+554*x)*(3*x^2+5*x+2)^(1/2)

Rubi [A] (verified)

Time = 0.03 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {832, 793, 635, 212} \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=\frac {247 \text {arctanh}\left (\frac {6 x+5}{2 \sqrt {3} \sqrt {3 x^2+5 x+2}}\right )}{9 \sqrt {3}}-\frac {2 (139 x+121) (2 x+3)^2}{3 \sqrt {3 x^2+5 x+2}}+\frac {2}{9} (554 x+1239) \sqrt {3 x^2+5 x+2} \]

[In]

Int[((5 - x)*(3 + 2*x)^3)/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(-2*(3 + 2*x)^2*(121 + 139*x))/(3*Sqrt[2 + 5*x + 3*x^2]) + (2*(1239 + 554*x)*Sqrt[2 + 5*x + 3*x^2])/9 + (247*A
rcTanh[(5 + 6*x)/(2*Sqrt[3]*Sqrt[2 + 5*x + 3*x^2])])/(9*Sqrt[3])

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 793

Int[((d_.) + (e_.)*(x_))*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(-(b
*e*g*(p + 2) - c*(e*f + d*g)*(2*p + 3) - 2*c*e*g*(p + 1)*x))*((a + b*x + c*x^2)^(p + 1)/(2*c^2*(p + 1)*(2*p +
3))), x] + Dist[(b^2*e*g*(p + 2) - 2*a*c*e*g + c*(2*c*d*f - b*(e*f + d*g))*(2*p + 3))/(2*c^2*(2*p + 3)), Int[(
a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && NeQ[b^2 - 4*a*c, 0] &&  !LeQ[p, -1]

Rule 832

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Sim
p[(-(d + e*x)^(m - 1))*(a + b*x + c*x^2)^(p + 1)*((2*a*c*(e*f + d*g) - b*(c*d*f + a*e*g) - (2*c^2*d*f + b^2*e*
g - c*(b*e*f + b*d*g + 2*a*e*g))*x)/(c*(p + 1)*(b^2 - 4*a*c))), x] - Dist[1/(c*(p + 1)*(b^2 - 4*a*c)), Int[(d
+ e*x)^(m - 2)*(a + b*x + c*x^2)^(p + 1)*Simp[2*c^2*d^2*f*(2*p + 3) + b*e*g*(a*e*(m - 1) + b*d*(p + 2)) - c*(2
*a*e*(e*f*(m - 1) + d*g*m) + b*d*(d*g*(2*p + 3) - e*f*(m - 2*p - 4))) + e*(b^2*e*g*(m + p + 1) + 2*c^2*d*f*(m
+ 2*p + 2) - c*(2*a*e*g*m + b*(e*f + d*g)*(m + 2*p + 2)))*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g}, x] &&
NeQ[b^2 - 4*a*c, 0] && NeQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[p, -1] && GtQ[m, 1] && ((EqQ[m, 2] && EqQ[p, -3] &
& RationalQ[a, b, c, d, e, f, g]) ||  !ILtQ[m + 2*p + 3, 0])

Rubi steps \begin{align*} \text {integral}& = -\frac {2 (3+2 x)^2 (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{3} \int \frac {(3+2 x) (481+554 x)}{\sqrt {2+5 x+3 x^2}} \, dx \\ & = -\frac {2 (3+2 x)^2 (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{9} (1239+554 x) \sqrt {2+5 x+3 x^2}+\frac {247}{9} \int \frac {1}{\sqrt {2+5 x+3 x^2}} \, dx \\ & = -\frac {2 (3+2 x)^2 (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{9} (1239+554 x) \sqrt {2+5 x+3 x^2}+\frac {494}{9} \text {Subst}\left (\int \frac {1}{12-x^2} \, dx,x,\frac {5+6 x}{\sqrt {2+5 x+3 x^2}}\right ) \\ & = -\frac {2 (3+2 x)^2 (121+139 x)}{3 \sqrt {2+5 x+3 x^2}}+\frac {2}{9} (1239+554 x) \sqrt {2+5 x+3 x^2}+\frac {247 \tanh ^{-1}\left (\frac {5+6 x}{2 \sqrt {3} \sqrt {2+5 x+3 x^2}}\right )}{9 \sqrt {3}} \\ \end{align*}

Mathematica [A] (verified)

Time = 0.29 (sec) , antiderivative size = 78, normalized size of antiderivative = 0.85 \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=-\frac {2 \sqrt {2+5 x+3 x^2} \left (789+806 x-31 x^2+6 x^3\right )}{9 (1+x) (2+3 x)}+\frac {494 \text {arctanh}\left (\frac {\sqrt {\frac {2}{3}+\frac {5 x}{3}+x^2}}{1+x}\right )}{9 \sqrt {3}} \]

[In]

Integrate[((5 - x)*(3 + 2*x)^3)/(2 + 5*x + 3*x^2)^(3/2),x]

[Out]

(-2*Sqrt[2 + 5*x + 3*x^2]*(789 + 806*x - 31*x^2 + 6*x^3))/(9*(1 + x)*(2 + 3*x)) + (494*ArcTanh[Sqrt[2/3 + (5*x
)/3 + x^2]/(1 + x)])/(9*Sqrt[3])

Maple [A] (verified)

Time = 0.35 (sec) , antiderivative size = 60, normalized size of antiderivative = 0.65

method result size
risch \(-\frac {2 \left (6 x^{3}-31 x^{2}+806 x +789\right )}{9 \sqrt {3 x^{2}+5 x +2}}+\frac {247 \ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 x^{2}+5 x +2}\right ) \sqrt {3}}{27}\) \(60\)
trager \(-\frac {2 \left (6 x^{3}-31 x^{2}+806 x +789\right )}{9 \sqrt {3 x^{2}+5 x +2}}+\frac {247 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) \ln \left (6 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right ) x +5 \operatorname {RootOf}\left (\textit {\_Z}^{2}-3\right )+6 \sqrt {3 x^{2}+5 x +2}\right )}{27}\) \(72\)
default \(-\frac {455 \left (5+6 x \right )}{18 \sqrt {3 x^{2}+5 x +2}}-\frac {881}{18 \sqrt {3 x^{2}+5 x +2}}-\frac {4 x^{3}}{3 \sqrt {3 x^{2}+5 x +2}}+\frac {62 x^{2}}{9 \sqrt {3 x^{2}+5 x +2}}-\frac {247 x}{9 \sqrt {3 x^{2}+5 x +2}}+\frac {247 \ln \left (\frac {\left (\frac {5}{2}+3 x \right ) \sqrt {3}}{3}+\sqrt {3 x^{2}+5 x +2}\right ) \sqrt {3}}{27}\) \(113\)

[In]

int((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

-2/9*(6*x^3-31*x^2+806*x+789)/(3*x^2+5*x+2)^(1/2)+247/27*ln(1/3*(5/2+3*x)*3^(1/2)+(3*x^2+5*x+2)^(1/2))*3^(1/2)

Fricas [A] (verification not implemented)

none

Time = 0.38 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00 \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=\frac {247 \, \sqrt {3} {\left (3 \, x^{2} + 5 \, x + 2\right )} \log \left (4 \, \sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} {\left (6 \, x + 5\right )} + 72 \, x^{2} + 120 \, x + 49\right ) - 12 \, {\left (6 \, x^{3} - 31 \, x^{2} + 806 \, x + 789\right )} \sqrt {3 \, x^{2} + 5 \, x + 2}}{54 \, {\left (3 \, x^{2} + 5 \, x + 2\right )}} \]

[In]

integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(3/2),x, algorithm="fricas")

[Out]

1/54*(247*sqrt(3)*(3*x^2 + 5*x + 2)*log(4*sqrt(3)*sqrt(3*x^2 + 5*x + 2)*(6*x + 5) + 72*x^2 + 120*x + 49) - 12*
(6*x^3 - 31*x^2 + 806*x + 789)*sqrt(3*x^2 + 5*x + 2))/(3*x^2 + 5*x + 2)

Sympy [F]

\[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=- \int \left (- \frac {243 x}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \left (- \frac {126 x^{2}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \left (- \frac {4 x^{3}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx - \int \frac {8 x^{4}}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\, dx - \int \left (- \frac {135}{3 x^{2} \sqrt {3 x^{2} + 5 x + 2} + 5 x \sqrt {3 x^{2} + 5 x + 2} + 2 \sqrt {3 x^{2} + 5 x + 2}}\right )\, dx \]

[In]

integrate((5-x)*(3+2*x)**3/(3*x**2+5*x+2)**(3/2),x)

[Out]

-Integral(-243*x/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)), x) -
 Integral(-126*x**2/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)), x
) - Integral(-4*x**3/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)),
x) - Integral(8*x**4/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)),
x) - Integral(-135/(3*x**2*sqrt(3*x**2 + 5*x + 2) + 5*x*sqrt(3*x**2 + 5*x + 2) + 2*sqrt(3*x**2 + 5*x + 2)), x)

Maxima [A] (verification not implemented)

none

Time = 0.29 (sec) , antiderivative size = 92, normalized size of antiderivative = 1.00 \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=-\frac {4 \, x^{3}}{3 \, \sqrt {3 \, x^{2} + 5 \, x + 2}} + \frac {62 \, x^{2}}{9 \, \sqrt {3 \, x^{2} + 5 \, x + 2}} + \frac {247}{27} \, \sqrt {3} \log \left (2 \, \sqrt {3} \sqrt {3 \, x^{2} + 5 \, x + 2} + 6 \, x + 5\right ) - \frac {1612 \, x}{9 \, \sqrt {3 \, x^{2} + 5 \, x + 2}} - \frac {526}{3 \, \sqrt {3 \, x^{2} + 5 \, x + 2}} \]

[In]

integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(3/2),x, algorithm="maxima")

[Out]

-4/3*x^3/sqrt(3*x^2 + 5*x + 2) + 62/9*x^2/sqrt(3*x^2 + 5*x + 2) + 247/27*sqrt(3)*log(2*sqrt(3)*sqrt(3*x^2 + 5*
x + 2) + 6*x + 5) - 1612/9*x/sqrt(3*x^2 + 5*x + 2) - 526/3/sqrt(3*x^2 + 5*x + 2)

Giac [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 62, normalized size of antiderivative = 0.67 \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=-\frac {247}{27} \, \sqrt {3} \log \left ({\left | -2 \, \sqrt {3} {\left (\sqrt {3} x - \sqrt {3 \, x^{2} + 5 \, x + 2}\right )} - 5 \right |}\right ) - \frac {2 \, {\left ({\left ({\left (6 \, x - 31\right )} x + 806\right )} x + 789\right )}}{9 \, \sqrt {3 \, x^{2} + 5 \, x + 2}} \]

[In]

integrate((5-x)*(3+2*x)^3/(3*x^2+5*x+2)^(3/2),x, algorithm="giac")

[Out]

-247/27*sqrt(3)*log(abs(-2*sqrt(3)*(sqrt(3)*x - sqrt(3*x^2 + 5*x + 2)) - 5)) - 2/9*(((6*x - 31)*x + 806)*x + 7
89)/sqrt(3*x^2 + 5*x + 2)

Mupad [F(-1)]

Timed out. \[ \int \frac {(5-x) (3+2 x)^3}{\left (2+5 x+3 x^2\right )^{3/2}} \, dx=-\int \frac {{\left (2\,x+3\right )}^3\,\left (x-5\right )}{{\left (3\,x^2+5\,x+2\right )}^{3/2}} \,d x \]

[In]

int(-((2*x + 3)^3*(x - 5))/(5*x + 3*x^2 + 2)^(3/2),x)

[Out]

-int(((2*x + 3)^3*(x - 5))/(5*x + 3*x^2 + 2)^(3/2), x)